Limits

Questions

Question 1. As a warm-up, compute the following partial derivatives.
(a) Compute f_{x} and f_{y} for $f(x, y)=x^{4}+5 x y^{3}$.
(b) Compute $\frac{\partial w}{\partial u}, \frac{\partial w}{\partial v}$ if $w=\frac{e^{v}}{u+\nu^{2}}$.
(c) Compute $R_{t}(0,1)$ for $R(s, t)=t e^{s / t}$.

Question 2. Draw a contour map of $f(x, y)=x^{2}-y^{2}$ showing several level sets $f(x, y)=k$. Include the level set for $k=0$, and at least one level set with $k>0$ and one with $k<0$.

Then compute $f_{x}, f_{y}, f_{x x}, f_{y y}$ at $(x, y)=(1,1)$, and think about what your answers mean geometrically, using your contour map as guidance.

Question 3. If $f(x, y)=\frac{7}{8}\left(y^{2}+y+x\right)^{4}$, compute $f_{x y x y x}(2,0)$. Hint: it may be easier to do the derivatives with respect to x first (why are you allowed to do that?).
Question 4. Does there exist a function $f(x, y)$ with the specified partial derivatives? If so, find it. If not, explain why not.
(a) $f_{x}(x, y)=2 x+y, f_{y}(x, y)=4 y+x$
(b) $f_{x}(x, y)=e^{x}+\cos y, f_{y}(x, y)=x \cos y+e^{y}$
(c) $f_{x}(x, y)=e^{x^{2}-y^{2}}, f_{y}(x, y)=\sin \left(x^{2}\right) \cos \left(y^{2}\right)$

