Limits

Questions

Question 1. As a warm-up, compute the following partial derivatives.

- (a) Compute f_x and f_y for $f(x, y) = x^4 + 5xy^3$. (b) Compute $\frac{\partial w}{\partial u}$, $\frac{\partial w}{\partial v}$ if $w = \frac{e^v}{u+v^2}$. (c) Compute $R_t(0, 1)$ for $R(s, t) = te^{s/t}$.

Question 2. Draw a contour map of $f(x, y) = x^2 - y^2$ showing several level sets f(x, y) = k. Include the level set for k = 0, and at least one level set with k > 0 and one with k < 0.

Then compute f_x , f_y , f_{xx} , f_{yy} at (x, y) = (1, 1), and think about what your answers mean geometrically, using your contour map as guidance.

Question 3. If $f(x, y) = \frac{7}{8}(y^2 + y + x)^4$, compute $f_{xyxyx}(2, 0)$. Hint: it may be easier to do the derivatives with respect to xfirst (why are you allowed to do that?).

Question 4. Does there exist a function f(x, y) with the specified partial derivatives? If so, find it. If not, explain why not.

- (a) $f_x(x, y) = 2x + y, f_y(x, y) = 4y + x$
- (b) $f_x(x, y) = e^x + \cos y, f_y(x, y) = x \cos y + e^y$
- (c) $f_x(x, y) = e^{x^2 y^2}, f_y(x, y) = \sin(x^2)\cos(y^2)$